Human Factors of Advanced Driver Assistance Systems (ADAS)

Benjamin Lester, Ph.D.
Robert Rauschenberger, Ph.D.
Human Factors of Advanced Driver Assistance Systems (ADAS)

Benjamin Lester, Ph.D.
Robert Rauschenberger, Ph.D.
What Might the Future of Driving Look Like?
We Might Not Be Far Off
Automation in the News

A Google self-driving car caused a crash for the first time

A bad assumption led to a minor fender-bender

Google's self-driving car at fault in accident

http://money.cnn.com/2016/02/29/autos/google-self-driving-car-accident/

Google self-driving car crashes into a bus (update: statement)

It may be the first instance of a Google autonomous car being at fault in an accident.

http://www.engadget.com/2016/02/29/google-self-driving-car-accident/

GOOGLE’S SELF-DRIVING CAR CAUSED ITS FIRST CRASH

http://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
Evolution of Technology

Present: Driver Assistance Systems

State-of-the-Art & Future
Vehicle Assistive Technologies

- Lane Keeping
- Adaptive Cruise Control
- Forward Collision Mitigation
- Park Assist
- Adaptive Headlights
Market Penetration of Technology – Frontal Airbags

% of new vehicles

Predicted values

http://www.iihs.org/iihs/sr/statusreport/article/47/1/1
Market Penetration of Technology – FCWM

% of new vehicles

Predicted values

95% by 2049

http://www.iihs.org/iihs/sr/statusreport/article/47/1/1
Driving Simulation & ADAS

- May facilitate driver response
- Lowers awareness of the environment
- Increases engagement in secondary tasks
- May increase risky driving in novice users

Parasuraman et al. (2000), Merat et al. (2012), Carsten et al. (2012), Muhrer et al. (2012)
Potential Benefits of ADAS

- Able to respond when human cannot or does not
- Helps gather information
- Compensates for distracted drivers

Muhrer et al. (2012), Mulder et al. (2012), Bao et al. (2012)
ADAS Programmatic Research

- ADAS testing an outgrowth of vehicle performance and safety testing

- **Year 1 Efforts (2014-2015):**
 - ADAS interaction with inflatable targets
 - ADAS interaction with pedestrian targets
 - Vehicle dynamics and human factors perspective

- **Year 2 Efforts (2015-2016):**
 - Driver learning through repeated exposure to ADAS
 - Understanding how drivers react to, use, and understand multiple ADAS systems
 - Analyses are on-going…
Forward Collision Warning & Mitigation System
Testing Human-ADAS Interaction

- Eye tracking and in-vehicle video recording
- Vehicle data acquisition, hi-precision GPS
- Dynamic naturalistic driving events
- Closed course testing
- 35 MPH, 40 feet of headway
- Balloon car deployment on straightaway
- 2 traffic lights
In-vehicle Eye Tracking
What Did We Find?

- 14 of 16 participants reacted to avoid hitting the balloon car
- Auto-braking (FCM) engaged for 2 participants
- Attentive drivers can avoid collision, even with active ADAS
- FCWM cannot prevent accidents, but can mitigate
- When distracted by cellular phone use, FCWM activations increase

No substitute for attentive driving
What Did We Find?

- FCWM was **not associated** with:
 - riskier driving behaviors
 - disruption to driver’s ability to control vehicle

- Collision warning may facilitate response under conditions of divided attention
Year 2 Results - Preview

Systems tested:
• Adaptive Cruise Control
• Lane Departure Warning

Results show technologies:
• Enhance safety
• Require attentive driving

The changing role of the driver:
• Passive monitoring?
• Timely intervention?

Crump et al. (2015), Baraket et al. (2015)
Thank you!

Human Factors ADAS Team

- David Cades, Ph.D. (Chicago)
- Caroline Crump, Ph.D. (LA)
- Doug Young, Ph.D. (LA)